Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus.

Identifieur interne : 000462 ( Main/Exploration ); précédent : 000461; suivant : 000463

Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus.

Auteurs : Xianfeng Tang [République populaire de Chine] ; Dian Wang [République populaire de Chine] ; Yu Liu [République populaire de Chine] ; Mengzhu Lu [République populaire de Chine] ; Yamei Zhuang [République populaire de Chine] ; Zhi Xie [République populaire de Chine] ; Congpeng Wang [République populaire de Chine] ; Shumin Wang [République populaire de Chine] ; Yingzhen Kong [République populaire de Chine] ; Guohua Chai [République populaire de Chine] ; Gongke Zhou [République populaire de Chine]

Source :

RBID : pubmed:31596964

Abstract

Wood (secondary xylem) formation in tree species is dependent on auxin-mediated vascular cambium activity in stems. However, the complex regulatory networks underlying xylem formation remain elusive. Xylem development in Populus was characterized based on microscopic observations of stem sections in transgenic plants. Transcriptomic, quantitative real-time PCR, chromatin immunoprecipitation PCR, and electrophoretic mobility shift assay analyses were conducted to identify target genes involved in xylem development. Yeast two-hybrid, pull-down, bimolecular fluorescence complementation, and co-immunoprecipitation assays were used to validate protein-protein interactions. PaC3H17 and its target PaMYB199 were found to be predominantly expressed in the vascular cambium and developing secondary xylem in Populus stems and play opposite roles in controlling cambial cell proliferation and secondary cell wall thickening through an overlapping pathway. Further, PaC3H17 interacts with PaMYB199 to form a complex, attenuating PaMYB199-driven suppression of its xylem targets. Exogenous auxin application enhances the dual control of the PaC3H17-PaMYB199 module during cambium division, thereby promoting secondary cell wall deposition. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module represents a novel regulatory mechanism in Populus, increasing our understanding of the regulatory networks involved in wood formation.

DOI: 10.1111/nph.16244
PubMed: 31596964


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus.</title>
<author>
<name sortKey="Tang, Xianfeng" sort="Tang, Xianfeng" uniqKey="Tang X" first="Xianfeng" last="Tang">Xianfeng Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Dian" sort="Wang, Dian" uniqKey="Wang D" first="Dian" last="Wang">Dian Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yu" sort="Liu, Yu" uniqKey="Liu Y" first="Yu" last="Liu">Yu Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109</wicri:regionArea>
<wicri:noRegion>266109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhuang, Yamei" sort="Zhuang, Yamei" uniqKey="Zhuang Y" first="Yamei" last="Zhuang">Yamei Zhuang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of the Chinese Academy of Sciences, Beijing, 100049, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of the Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xie, Zhi" sort="Xie, Zhi" uniqKey="Xie Z" first="Zhi" last="Xie">Zhi Xie</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of the Chinese Academy of Sciences, Beijing, 100049, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of the Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032</wicri:regionArea>
<wicri:noRegion>200032</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Congpeng" sort="Wang, Congpeng" uniqKey="Wang C" first="Congpeng" last="Wang">Congpeng Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109</wicri:regionArea>
<wicri:noRegion>266109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shumin" sort="Wang, Shumin" uniqKey="Wang S" first="Shumin" last="Wang">Shumin Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kong, Yingzhen" sort="Kong, Yingzhen" uniqKey="Kong Y" first="Yingzhen" last="Kong">Yingzhen Kong</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Qingdao Agricultural University, Qingdao, 266109</wicri:regionArea>
<wicri:noRegion>266109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chai, Guohua" sort="Chai, Guohua" uniqKey="Chai G" first="Guohua" last="Chai">Guohua Chai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109</wicri:regionArea>
<wicri:noRegion>266109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Gongke" sort="Zhou, Gongke" uniqKey="Zhou G" first="Gongke" last="Zhou">Gongke Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31596964</idno>
<idno type="pmid">31596964</idno>
<idno type="doi">10.1111/nph.16244</idno>
<idno type="wicri:Area/Main/Corpus">000669</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000669</idno>
<idno type="wicri:Area/Main/Curation">000669</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000669</idno>
<idno type="wicri:Area/Main/Exploration">000669</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus.</title>
<author>
<name sortKey="Tang, Xianfeng" sort="Tang, Xianfeng" uniqKey="Tang X" first="Xianfeng" last="Tang">Xianfeng Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Dian" sort="Wang, Dian" uniqKey="Wang D" first="Dian" last="Wang">Dian Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yu" sort="Liu, Yu" uniqKey="Liu Y" first="Yu" last="Liu">Yu Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109</wicri:regionArea>
<wicri:noRegion>266109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091</wicri:regionArea>
<wicri:noRegion>100091</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhuang, Yamei" sort="Zhuang, Yamei" uniqKey="Zhuang Y" first="Yamei" last="Zhuang">Yamei Zhuang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>University of the Chinese Academy of Sciences, Beijing, 100049, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of the Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Xie, Zhi" sort="Xie, Zhi" uniqKey="Xie Z" first="Zhi" last="Xie">Zhi Xie</name>
<affiliation wicri:level="1">
<nlm:affiliation>University of the Chinese Academy of Sciences, Beijing, 100049, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>University of the Chinese Academy of Sciences, Beijing, 100049</wicri:regionArea>
<wicri:noRegion>100049</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032</wicri:regionArea>
<wicri:noRegion>200032</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Congpeng" sort="Wang, Congpeng" uniqKey="Wang C" first="Congpeng" last="Wang">Congpeng Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109</wicri:regionArea>
<wicri:noRegion>266109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shumin" sort="Wang, Shumin" uniqKey="Wang S" first="Shumin" last="Wang">Shumin Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kong, Yingzhen" sort="Kong, Yingzhen" uniqKey="Kong Y" first="Yingzhen" last="Kong">Yingzhen Kong</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Agronomy, Qingdao Agricultural University, Qingdao, 266109</wicri:regionArea>
<wicri:noRegion>266109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chai, Guohua" sort="Chai, Guohua" uniqKey="Chai G" first="Guohua" last="Chai">Guohua Chai</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109</wicri:regionArea>
<wicri:noRegion>266109</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Gongke" sort="Zhou, Gongke" uniqKey="Zhou G" first="Gongke" last="Zhou">Gongke Zhou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101</wicri:regionArea>
<wicri:noRegion>266101</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wood (secondary xylem) formation in tree species is dependent on auxin-mediated vascular cambium activity in stems. However, the complex regulatory networks underlying xylem formation remain elusive. Xylem development in Populus was characterized based on microscopic observations of stem sections in transgenic plants. Transcriptomic, quantitative real-time PCR, chromatin immunoprecipitation PCR, and electrophoretic mobility shift assay analyses were conducted to identify target genes involved in xylem development. Yeast two-hybrid, pull-down, bimolecular fluorescence complementation, and co-immunoprecipitation assays were used to validate protein-protein interactions. PaC3H17 and its target PaMYB199 were found to be predominantly expressed in the vascular cambium and developing secondary xylem in Populus stems and play opposite roles in controlling cambial cell proliferation and secondary cell wall thickening through an overlapping pathway. Further, PaC3H17 interacts with PaMYB199 to form a complex, attenuating PaMYB199-driven suppression of its xylem targets. Exogenous auxin application enhances the dual control of the PaC3H17-PaMYB199 module during cambium division, thereby promoting secondary cell wall deposition. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module represents a novel regulatory mechanism in Populus, increasing our understanding of the regulatory networks involved in wood formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31596964</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>225</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>1545-1561</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16244</ELocationID>
<Abstract>
<AbstractText>Wood (secondary xylem) formation in tree species is dependent on auxin-mediated vascular cambium activity in stems. However, the complex regulatory networks underlying xylem formation remain elusive. Xylem development in Populus was characterized based on microscopic observations of stem sections in transgenic plants. Transcriptomic, quantitative real-time PCR, chromatin immunoprecipitation PCR, and electrophoretic mobility shift assay analyses were conducted to identify target genes involved in xylem development. Yeast two-hybrid, pull-down, bimolecular fluorescence complementation, and co-immunoprecipitation assays were used to validate protein-protein interactions. PaC3H17 and its target PaMYB199 were found to be predominantly expressed in the vascular cambium and developing secondary xylem in Populus stems and play opposite roles in controlling cambial cell proliferation and secondary cell wall thickening through an overlapping pathway. Further, PaC3H17 interacts with PaMYB199 to form a complex, attenuating PaMYB199-driven suppression of its xylem targets. Exogenous auxin application enhances the dual control of the PaC3H17-PaMYB199 module during cambium division, thereby promoting secondary cell wall deposition. Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module represents a novel regulatory mechanism in Populus, increasing our understanding of the regulatory networks involved in wood formation.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Xianfeng</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Dian</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Mengzhu</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0001-9245-1842</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhuang</LastName>
<ForeName>Yamei</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>University of the Chinese Academy of Sciences, Beijing, 100049, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xie</LastName>
<ForeName>Zhi</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>University of the Chinese Academy of Sciences, Beijing, 100049, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Congpeng</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shumin</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kong</LastName>
<ForeName>Yingzhen</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chai</LastName>
<ForeName>Guohua</ForeName>
<Initials>G</Initials>
<Identifier Source="ORCID">0000-0002-2724-6516</Identifier>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>College of Resources and Environment, Qingdao Agricultural University, Qingdao, 266109, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Gongke</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Populus </Keyword>
<Keyword MajorTopicYN="Y">auxin</Keyword>
<Keyword MajorTopicYN="Y">dual regulation</Keyword>
<Keyword MajorTopicYN="Y">functional module</Keyword>
<Keyword MajorTopicYN="Y">xylem formation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>09</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>10</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31596964</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16244</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B - Statistical Methodology 57: 289-300.</Citation>
</Reference>
<Reference>
<Citation>Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S et al. 2011. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23: 1124-1137.</Citation>
</Reference>
<Reference>
<Citation>Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S et al. 2014. Tandem CCCH zinc finger proteins in plant growth, development and stress response. Plant and Cell Physiology 55: 1367-1375.</Citation>
</Reference>
<Reference>
<Citation>Brown DM, Wightman R, Zhang Z, Gomez LD, Atanassov I, Bukowski JP, Tryfona T, McQueen-Mason SJ, Dupree P, Turner S. 2011. Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. The Plant Journal 66: 401-413.</Citation>
</Reference>
<Reference>
<Citation>Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR. 2009. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. The Plant Journal 57: 732-746.</Citation>
</Reference>
<Reference>
<Citation>Chai G, Hu R, Zhang D, Qi G, Zuo R, Cao Y, Chen P, Kong Y, Zhou G. 2012. Comprehensive analysis of CCCH zinc finger family in poplar (Populus trichocarpa). BMC Genomics 13: e253.</Citation>
</Reference>
<Reference>
<Citation>Chai G, Qi G, Cao Y, Wang Z, Yu L, Tang X, Yu Y, Wang D, Kong Y, Zhou G. 2014a. Poplar PdC3H17 and PdC3H18 are direct targets of PdMYB3 and PdMYB21, and positively regulate secondary wall formation in Arabidopsis and poplar. New Phytologist 203: 520-534.</Citation>
</Reference>
<Reference>
<Citation>Chai G, Wang Z, Tang X, Yu L, Qi G, Wang D, Yan X, Kong Y, Zhou G. 2014b. R2R3-MYB gene pairs in Populus: evolution and contribution to secondary wall formation and flowering time. Journal of Experimental Botany 65: 4255-4269.</Citation>
</Reference>
<Reference>
<Citation>Chai G, Kong Y, Zhu M, Yu L, Qi G, Tang X, Wang Z, Cao Y, Yu C, Zhou G. 2015. Arabidopsis C3H14 and C3H15 have overlapping roles in the regulation of secondary wall thickening and anther development. Journal of Experimental Botany 66: 2595-2609.</Citation>
</Reference>
<Reference>
<Citation>Collins C, Maruthi NM, Jahn CE. 2015. CYCD3 D-type cyclins regulate cambial cell proliferation and secondary growth in Arabidopsis. Journal of Experimental Botany 66: 4595-4606.</Citation>
</Reference>
<Reference>
<Citation>Du J, Groover A. 2010. Transcriptional regulation of secondary growth and wood formation. Journal of Integrative Plant Biology 52: 17-27.</Citation>
</Reference>
<Reference>
<Citation>Etchells JP, Provost CM, Turner SR. 2012. Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. PLoS Genetics 8: e1002997.</Citation>
</Reference>
<Reference>
<Citation>Etchells JP, Provost CM, Mishra L, Turner SR. 2013. WOX4 and WOX14 act downstream of the PXY receptor kinase to regulate plant vascular proliferation independently of any role in vascular organisation. Development 140: 2224-2234.</Citation>
</Reference>
<Reference>
<Citation>Etchells JP, Turner SR. 2010. The PXY-CLE41 receptor ligand pair defines a multifunctional pathway that controls the rate and orientation of vascular cell division. Development 137: 767-774.</Citation>
</Reference>
<Reference>
<Citation>Geisler-Lee J, Geisler M, Coutinho PM, Segerman B, Nishikubo N, Takahashi J, Aspeborg H, Djerbi S, Master E, Andersson-Gunnerås S et al. 2006. Poplar carbohydrate-active enzymes. Gene identification and expression analyses. Plant Physiology 140: 946-962.</Citation>
</Reference>
<Reference>
<Citation>Galloway A, Saveliev A, Łukasiak S, Hodson DJ, Bolland D, Balmanno K, Ahlfors H, Monzón-Casanova E, Mannurita SC, Bell LS et al. 2016. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence. Science 352: 453-459.</Citation>
</Reference>
<Reference>
<Citation>Guo S, Dai S, Singh PK, Wang H, Wang Y, Tan JL, Wee W, Ito T. 2018. A membrane-bound NAC-like transcription factor OsNTL5 represses the flowering in Oryza sativa. Frontiers in Plant Science 9: e555.</Citation>
</Reference>
<Reference>
<Citation>Heller G, Lunden K, Finlay RD, Asiegbu FO, Elfstrand M. 2012. Expression analysis of Clavata1-like and Nodulin21-like genes from Pinus sylvestris during ectomycorrhiza formation. Mycorrhiza 22: 271-277.</Citation>
</Reference>
<Reference>
<Citation>Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M. 2003. Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. The Plant Journal 34: 733-739.</Citation>
</Reference>
<Reference>
<Citation>Immanen J, Nieminen K, Smolander OP, Kojima M, Alonso SJ, Koskinen P, Zhang J, Elo A, Mahonen AP, Street N et al. 2016. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Current Biology 26: 1990-1997.</Citation>
</Reference>
<Reference>
<Citation>Jensen JK, Kim H, Cocuron JC, Orler R, Ralph J, Wilkerson CG. 2011. The DUF579 domain containing proteins IRX15 and IRX15-L affect xylan synthesis in Arabidopsis. The Plant Journal 66: 387-400.</Citation>
</Reference>
<Reference>
<Citation>Johnsson C, Jin X, Xue W, Dubreuil C, Lezhneva L, Fischer U. 2019. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. Physiology Plantarum 165: 673-689.</Citation>
</Reference>
<Reference>
<Citation>Ko J, Kim W, Han K. 2009. Ectopic expression of MYB46 identifies transcriptional regulatory genes involved in secondary wall biosynthesis in Arabidopsis. The Plant Journal 60: 649-665.</Citation>
</Reference>
<Reference>
<Citation>Kucukoglu M, Nillson J, Zheng B, Chaabouni S, Nilsson O. 2017. WUSCHEL-RELATED HOMEOBOX4 (WOX4)-like genes regulate cambial cell division activity and secondary growth in Populus trees. New Phytologist 215: 642-657.</Citation>
</Reference>
<Reference>
<Citation>McCarthy RL, Zhong R, Fowler S, Lyskowski D, Piyasena H, Carleton K, Spicer C, Ye Z. 2010. The poplar MYB transcription factors, PtrMYB3 and PtrMYB20, are involved in the regulation of secondary wall biosynthesis. Plant and Cell Physiology 51: 1084-1090.</Citation>
</Reference>
<Reference>
<Citation>Niemi K, Vuorinen T, Ernstsen A, Häggman H. 2002. Ectomycorrhizal fungi and exogenous auxins influence root and mycorrhiza formation of Scots pine hypocotyl cuttings in vitro. Tree Physiology 17: 1231-1239.</Citation>
</Reference>
<Reference>
<Citation>Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalrao RP. 2008. Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20: 843-855.</Citation>
</Reference>
<Reference>
<Citation>Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29: e45.</Citation>
</Reference>
<Reference>
<Citation>Pomeranz M, Finer J, Jang JC. 2011. Putative molecular mechanisms underlying tandem CCCH zinc finger protein mediated plant growth, stress and gene expression responses. Plant Signaling Behavior 6: 647-651.</Citation>
</Reference>
<Reference>
<Citation>Regier N, Frey B. 2010. Experiment comparison of relative qRT-PCR quantification approaches for gene expression studies in poplar. BMC Molecular Biology 11: e57.</Citation>
</Reference>
<Reference>
<Citation>Robischon M, Du J, Miura E, Groover A. 2011. The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiology 155: 1214-1225.</Citation>
</Reference>
<Reference>
<Citation>Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M et al. 2014. Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26: 4954-4973.</Citation>
</Reference>
<Reference>
<Citation>Sheen J. 2001. Signal transduction in maize and Arabidopsis mesophyll protoplasts. Plant Physiology 127: 1466-1475.</Citation>
</Reference>
<Reference>
<Citation>Shin JM, Chung KM, Sakamoto S, Kojima S, Yeh CM, Ikeda M, Mitsuda N, Ohme-Takagi M. 2017. The chimeric repressor for the GATA4 transcription factor improves tolerance to nitrogen deficiency in Arabidopsis. Plant Biotechnology 34: 151-158.</Citation>
</Reference>
<Reference>
<Citation>Song D, Shen J, Li L. 2010. Characterization of cellulose synthase complexes in Populus xylem differentiation. New Phytologist 187: 777-790.</Citation>
</Reference>
<Reference>
<Citation>Strabala TJ, O'Donnell PJ, Smit AM, Ampomah-Dwamena C, Martin EJ, Netzler N, Nieuwenhuizen NJ, Quinn BD, Foote HC, Hudson KR. 2006. Gain-of-function phenotypes of many CLAVATA3/ESR genes, including four new family members, correlate with tandem variations in the conserved CLAVATA3/ESR domain. Plant Physiology 140: 1331-1344.</Citation>
</Reference>
<Reference>
<Citation>Suer S, Agusti J, Sanchez P, Schwarz M, Greb T. 2011. WOX4 imparts auxin responsiveness to cambium cells in Arabidopsis. Plant Cell 23: 3247-3259.</Citation>
</Reference>
<Reference>
<Citation>Suk F, Chang C, Lin R, Lin S, Liu S, Jau C. 2018. ZFP36L1 and ZFP36L2 inhibit cell proliferation in a cyclin D-dependent and p53-independent manner. Scientific Reports 8: e2742.</Citation>
</Reference>
<Reference>
<Citation>Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, Johnsson C, Kumar V, Mannapperuma C, Delhomme N, Nilsson O et al. 2017. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell 29: 1585-1604.</Citation>
</Reference>
<Reference>
<Citation>Tuominen H, Puech L, Fink S, Sundberg B. 1997. A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiology 115: 577-585.</Citation>
</Reference>
<Reference>
<Citation>Uggla C, Moritz T, Sandberg G, Sunderg B. 1996. Auxin as a positional signal in pattern formation in plants. Proceeding of the National Academy of Science, USA 93: 9282-9286.</Citation>
</Reference>
<Reference>
<Citation>Urbanowicz BR, Peña MJ, Moniz HA, Moremen KW, York WS. 2014. Two Arabidopsis proteins synthesize acetylated xylan in vitro. The Plant Journal 80: 197-206.</Citation>
</Reference>
<Reference>
<Citation>Vanneste S, Friml J. 2009. Auxin: a trigger for change in plant development. Cell 136: 1005-1016.</Citation>
</Reference>
<Reference>
<Citation>Vogel KU, Bell LS, Galloway A, Ahlfors H, Turner M. 2016. The RNA-binding proteins Zfp36l1 and Zfp36l2 enforce the thymic β-selection checkpoint by limiting DNA damage response signaling and cell cycle progression. Journal of Immunology 197: 2673-2685.</Citation>
</Reference>
<Reference>
<Citation>Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C et al. 2004. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. The Plant Journal 40: 428-438.</Citation>
</Reference>
<Reference>
<Citation>Wagner GP, Kin K, Lynch VJ. 2012. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory in Biosciences 131: 281-285.</Citation>
</Reference>
<Reference>
<Citation>Wu AM, Rihouey C, Seveno M, Hörnblad E, Singh SK, Matsunaga T, Ishii T, Lerouge P, Marchant A. 2009. The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation. The Plant Journal 57: 718-731.</Citation>
</Reference>
<Reference>
<Citation>Xu C, Shen Y, He F, Fu X, Yu H, Lu W, Li Y, Li C, Fan D, Wang H et al. 2019. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. New Phytologist 222: 752-767.</Citation>
</Reference>
<Reference>
<Citation>Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang ZY, Dixon RA. 2013. LACCASE is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis. Plant Cell 25: 3976-3987.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, McCarthy RL, Haghighat M, Ye Z. 2013. The poplar MYB master switches bind to the SMRE site and activate the secondary wall biosynthetic program during wood formation. PLoS ONE 8: e69219.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, McCarthy RL, Lee C, Ye Z. 2011. Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiology 157: 1452-1468.</Citation>
</Reference>
<Reference>
<Citation>Zhong R, Ye Z. 2012. MYB46 and MYB83 bind to the SMRE sites and directly activate a suite of transcription factors and secondary wall biosynthetic genes. Plant and Cell Physiology 53: 368-80.</Citation>
</Reference>
<Reference>
<Citation>Zhu Y, Song D, Xua P, Sun J, Li L. 2018. A HD-ZIP III gene, PtrHB4, is required for interfascicular cambium development in Populus. Plant Biotechnology Journal 16: 808-817.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Tang, Xianfeng" sort="Tang, Xianfeng" uniqKey="Tang X" first="Xianfeng" last="Tang">Xianfeng Tang</name>
</noRegion>
<name sortKey="Chai, Guohua" sort="Chai, Guohua" uniqKey="Chai G" first="Guohua" last="Chai">Guohua Chai</name>
<name sortKey="Chai, Guohua" sort="Chai, Guohua" uniqKey="Chai G" first="Guohua" last="Chai">Guohua Chai</name>
<name sortKey="Kong, Yingzhen" sort="Kong, Yingzhen" uniqKey="Kong Y" first="Yingzhen" last="Kong">Yingzhen Kong</name>
<name sortKey="Liu, Yu" sort="Liu, Yu" uniqKey="Liu Y" first="Yu" last="Liu">Yu Liu</name>
<name sortKey="Lu, Mengzhu" sort="Lu, Mengzhu" uniqKey="Lu M" first="Mengzhu" last="Lu">Mengzhu Lu</name>
<name sortKey="Wang, Congpeng" sort="Wang, Congpeng" uniqKey="Wang C" first="Congpeng" last="Wang">Congpeng Wang</name>
<name sortKey="Wang, Dian" sort="Wang, Dian" uniqKey="Wang D" first="Dian" last="Wang">Dian Wang</name>
<name sortKey="Wang, Shumin" sort="Wang, Shumin" uniqKey="Wang S" first="Shumin" last="Wang">Shumin Wang</name>
<name sortKey="Xie, Zhi" sort="Xie, Zhi" uniqKey="Xie Z" first="Zhi" last="Xie">Zhi Xie</name>
<name sortKey="Xie, Zhi" sort="Xie, Zhi" uniqKey="Xie Z" first="Zhi" last="Xie">Zhi Xie</name>
<name sortKey="Zhou, Gongke" sort="Zhou, Gongke" uniqKey="Zhou G" first="Gongke" last="Zhou">Gongke Zhou</name>
<name sortKey="Zhuang, Yamei" sort="Zhuang, Yamei" uniqKey="Zhuang Y" first="Yamei" last="Zhuang">Yamei Zhuang</name>
<name sortKey="Zhuang, Yamei" sort="Zhuang, Yamei" uniqKey="Zhuang Y" first="Yamei" last="Zhuang">Yamei Zhuang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000462 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000462 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31596964
   |texte=   Dual regulation of xylem formation by an auxin-mediated PaC3H17-PaMYB199 module in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31596964" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020